Predictive Modeling of Fluid Flows Using Conditional Score-based Diffusion Models
1 : Laboratoire de Mécanique Paris-Saclay
Ecole Normale Supérieure Paris-Saclay, Ecole Centrale Paris, CNRS, Université Paris-Saclay,Sorbonne Universités
2 : ONERA
Université Paris Saclay, Université Paris-Saclay
3 : CentraleSupélec
Université Paris-Saclay, Université Paris Saclay
4 : ONERA
Université Paris-Saclay
6 Chemin de la Vauve aux Granges, 91120 Palaiseau -
France
5 : CentraleSupélec
Université Paris-Saclay
3, rue Joliot Curie, 91192 GIF-SUR-YVETTE Cedex -
France
6 : Laboratoire de Mécanique Paris-Saclay
CentraleSupélec, Université Paris-Saclay, Centre National de la Recherche Scientifique, Ecole Normale Supérieure Paris-Saclay
7 : Laboratoire de Mécanique Paris-Saclay
(LMPS)
CentraleSupélec, Université Paris-Saclay, Centre National de la Recherche Scientifique, Ecole Normale Supérieure Paris-Saclay, Centre National de la Recherche Scientifique : UMR9026
4 avenue des sciences / 8-10 rue Joliot Curie, 91190 Gif-sur-Yvette -
France
Advances in computational power have made turbulent field simulations central to many disciplines, yet traditional solvers struggle to deliver fast flow estimations due to the inherent chaotic nature of the problem. More recently, diffusion models have set new benchmarks in generative modeling for similar problems. In this regard, we propose a data-driven conditional score-based diffusion model for transonic fluid flow prediction, integrating an energy constraint based on the flow statistics to enhance temporal stability.
Diffusion models aim at generating new samples from a dataset