16-19 déc. 2024 Paris (France)

Résumés > Barland Stéphane

Real-time smart self-mixing interferometry sensor with embedded neural network
Stéphane Barland  1@  , Pierre Emmanuel Novac  2  , Laurent Rodriguez  3  
1 : Institut de Physique de Nice
CNRS, Université Côte d'Azur
1361 route des Lucioles Sophia Antipolis 06560 Valbonne -  France
2 : Laboratoire d'Electronique, Antennes et Télécommunications
Université Côte d'Azur (UCA)
3 : Laboratoire d'Electronique, Antennes et Télécommunications
CNRS, Université Côte d'Azur

Self-mixing interferometry is a nonlinear optical measurement technique in which a laser beam is re-injected into the emitting laser itself after reflection on a target. Information about the target can in principle be obtained by monitoring the voltage across the laser but analyzing this signal is notoriously difficult, which hinders broader use of self-mixing interferometry. In this contribution, we show that a neural network can accurately reconstruct the displacement of the target from the interferometric signal in widely varying experimental conditions. By optimizing a tiny network and thanks to the qualia neural networks embedding framework, we demonstrate real time operation of a smart and robust self-mixing sensor with embedded AI running on a low power microcontroller.


Personnes connectées : 3 Vie privée
Chargement...